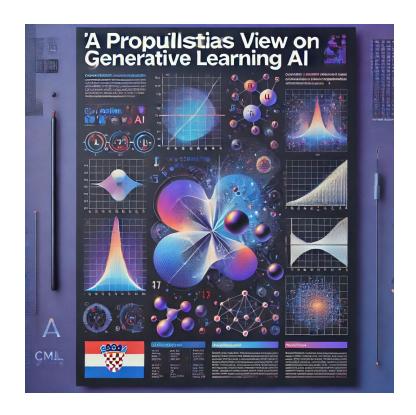
A probabilistic view on Generative AI

Matej Grcić

UniZG-FER

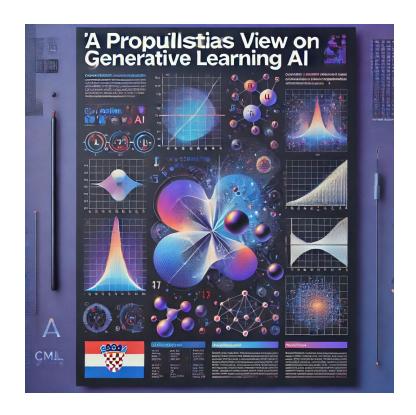
Almighty GenAl

Generate an image for a talk titled "A probabilistic view on Generative AI" at Croatian Machine Learning Workshop (CMLW)

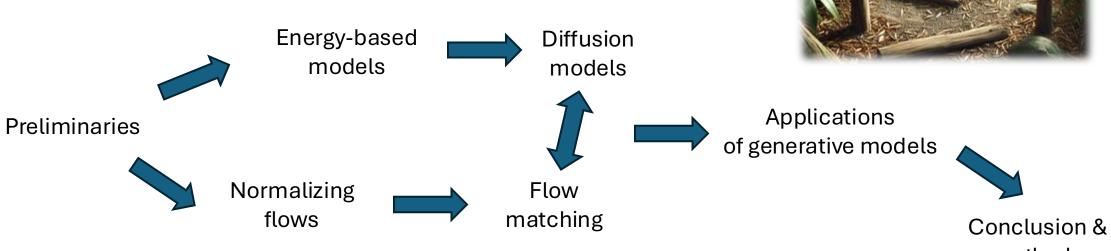


How did we end up here?

Generate an image for a talk titled "A probabilistic view on Generative AI" at Croatian Machine Learning Workshop (CMLW)



Agenda



Preliminaries

 $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d),\mathbb{P})$

d-dimensional probability space

 \mathbf{x}

Random variable (d-dimensional vector)

 $p(\mathbf{x})$

Probability density function

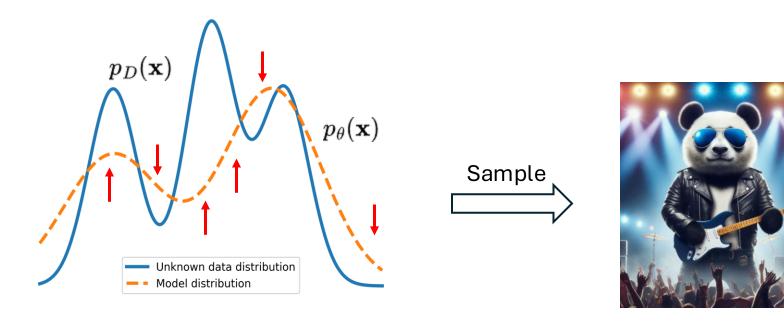
 $\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3, \dots, \mathbf{x}^i$

Realizations of a random variable

 $\mathbf{x}^i \sim p(\mathbf{x})$

Sampling the distribution of \mathbf{x}

How to learn the unknown data distribution?

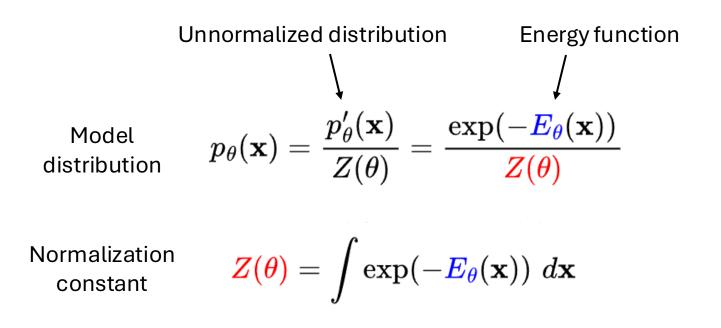


$$\min_{ heta} \; \operatorname{KL}[p_D || \, p_{ heta}] \cong \max_{ heta} \; \mathbb{E}_{\mathbf{x} \, \sim \, p_D}[\ln p_{ heta}(\mathbf{x})] pprox \max_{ heta} \; \mathbb{E}_{\mathbf{x} \in \mathcal{D}}[\ln p_{ heta}(\mathbf{x})]$$

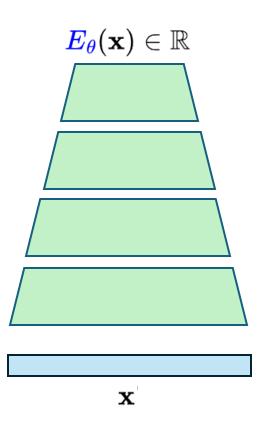
Energy-based models

How it all started..

Boltzmann's energy with deep models



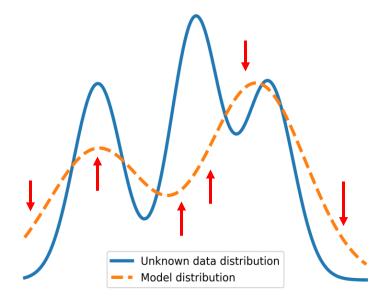
$$\min_{\theta} \mathbb{E}_{\mathbf{x} \sim p_D}[-\ln p_{\theta}(\mathbf{x})] = ???$$

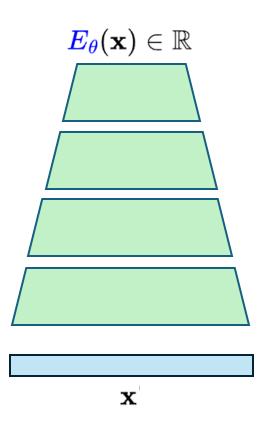


Optimizing the energy surface

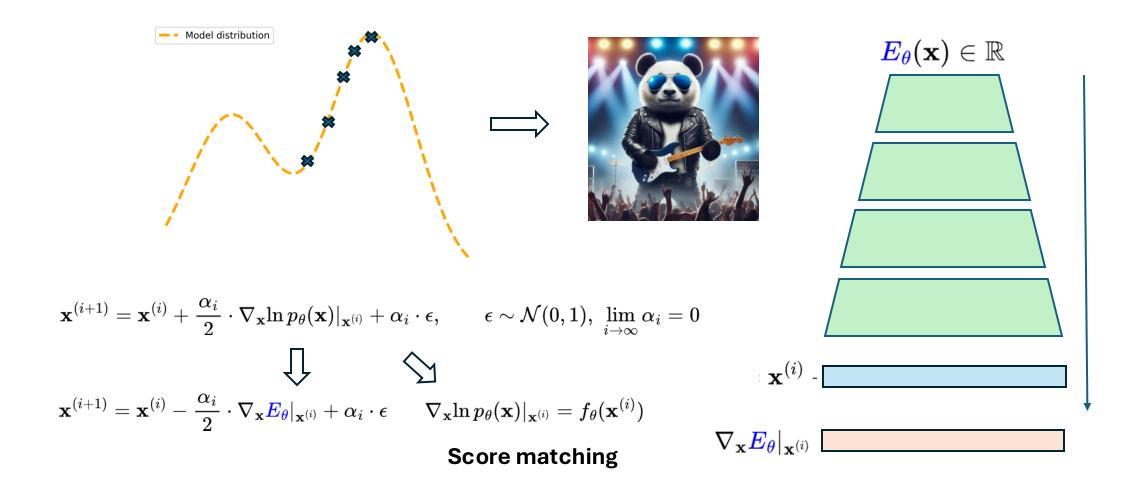
 $\min_{ heta} \mathbb{E}_{\mathbf{x} \sim p_D}[-\ln p_{ heta}(\mathbf{x})]$ Optimized by **gradient** descent

$$abla_{ heta} \, \mathbb{E}_{\mathbf{x} \, \sim \, p_D}[-\ln p_{ heta}(\mathbf{x})] = \mathbb{E}_{\mathbf{x} \sim p_D}[
abla_{ heta} \, E_{ heta}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p_{ heta}}[
abla_{ heta} \, E_{ heta}(\mathbf{x})]$$





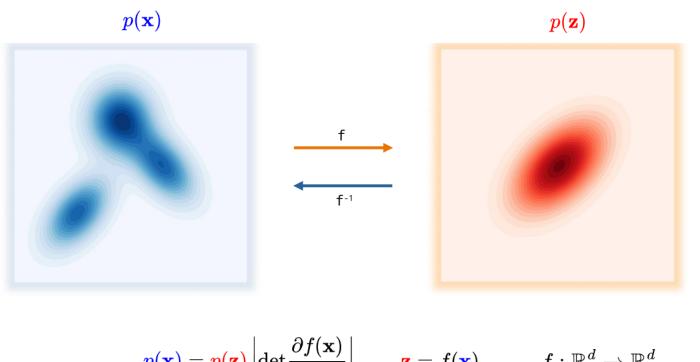
Iterative data generation

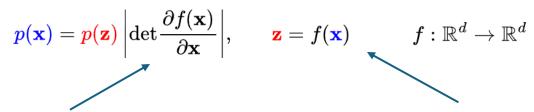


Normalizing flows

Let's get rid of normalization constant Z

Change of random variables



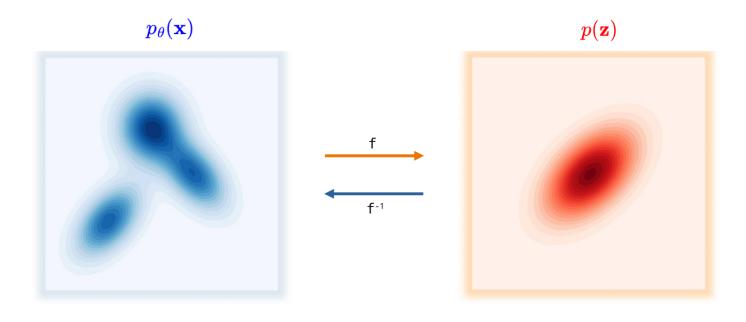


The determinant of Jacobian of *f*

Diffeomorphism (function and its inverse are differentiable)

Generative modeling by change of variables

Some complex model distribution



Known prior distribution e.g Gaussian

$$p_{ heta}(\mathbf{x}) = p(\mathbf{z}) \left| \det rac{\partial \mathbf{z}}{\partial \mathbf{x}}
ight|,$$

The determinant of Jacobian of f

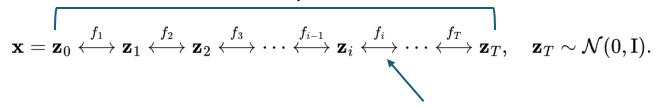
$$p_{ heta}(\mathbf{x}) = m{p}(\mathbf{z}) \left| \det rac{\partial \mathbf{z}}{\partial \mathbf{x}}
ight|, \qquad \qquad \mathbf{z} = f_{ heta}(\mathbf{x}) \qquad f: \mathbb{R}^d o \mathbb{R}^d$$

Parameterized diffeomorphism (Deep model)

Normalizing flows

$$p_{ heta}(\mathbf{x}) = p(\mathbf{z}) \left| \det rac{\partial \mathbf{z}}{\partial \mathbf{x}}
ight|, \quad \mathbf{z} = f_{ heta}(\mathbf{x})$$

Diffeomorphism



Diffeomorphism

$$\ln p_{ heta}(\mathbf{x}) = \ln p(\mathbf{z}_T) + \sum_{t=1}^T \ln \left| \det rac{\partial \mathbf{z}_t}{\partial \mathbf{z}_{t-1}}
ight|, \quad \mathbf{z}_t = f_{ heta_t}(\mathbf{z}_{t-1})$$
Invertible?

 $O(d^3)$ complexity?

 $egin{aligned} \dim(\mathbf{z}_T) &= \dim(\mathbf{x}) \ \mathbf{z}_T \sim \mathcal{N}(0, \mathrm{I}). \end{aligned}$ f_T

T_T

 \mathbf{z}_2

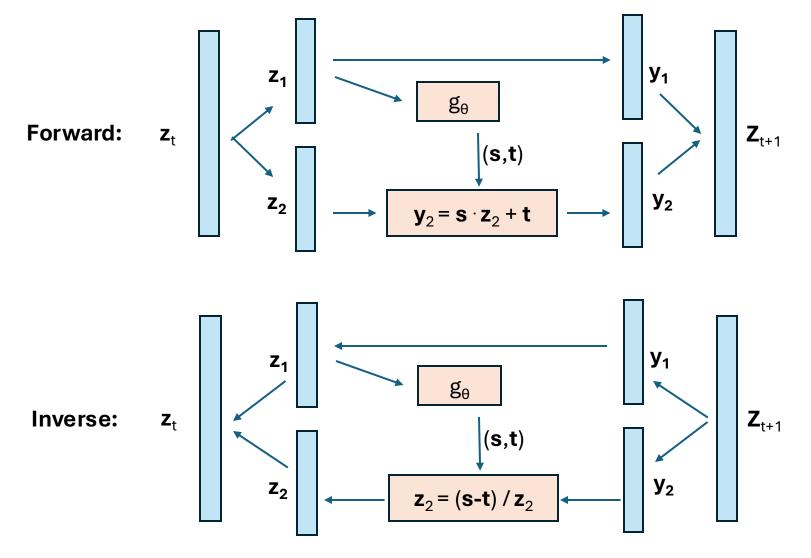
f₂

 \cdot \mathbf{z}_1

f₁

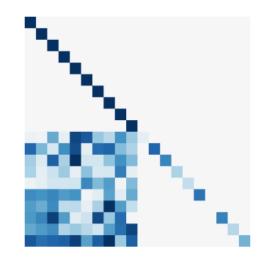
 $\mathbf{x} = \mathbf{z}_0$

Normalizing flows with affine coupling layers



Jacobian of coupling layer

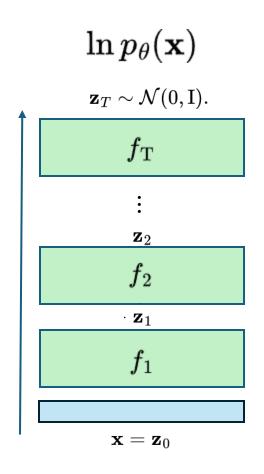
$$rac{\partial \mathbf{z}_{t+1}}{\partial \mathbf{z}_t} = 2$$

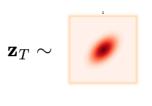


Lower triangular matrix

$$\left|\detrac{\partial \mathbf{z}_{t+1}}{\partial \mathbf{z}_{t}}
ight|$$
 has O(d) complexity

Forward/inverse with normalizing flows





 $f_{
m T}^{-1}$

:

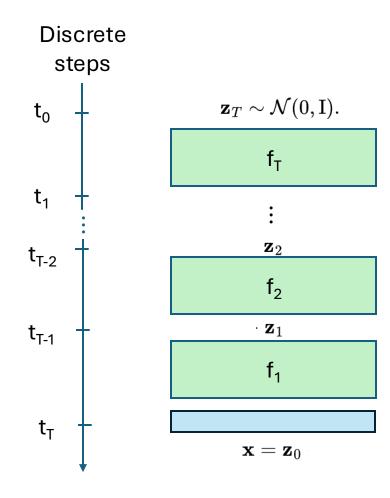
 f_2^{-1}

 \cdot \mathbf{z}_1

 f_1^{-1}

 $\mathbf{x} = \mathbf{z}_0$

Discrete normalizing flows



Continuous normalizing flows

Ordinary differential equation (IVP)

$$rac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t; heta), \quad \mathbf{z}(t_1) = \mathbf{x}$$

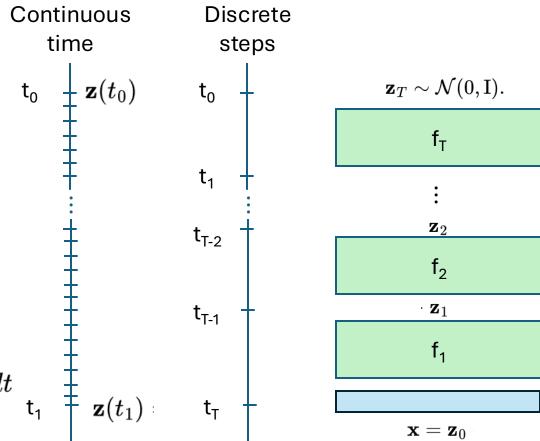
$$\mathbf{z}(t_0) = \mathbf{z}(t_1) + \int_{t_1}^{t_0} f(\mathbf{z}(t), t; heta) \; dt$$

Instantaneous change of variables

$$rac{d \ln p(\mathbf{z}(t))}{dt} = - ext{tr}\left(rac{\partial f}{\partial \mathbf{z}(t)}
ight)$$

$$egin{aligned} & \ln p(\mathbf{z}(t_1)) = \ln p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{tr}\left(rac{\partial f}{\partial \mathbf{z}(t)}
ight) \, dt \ & \mathbf{t_1} \ & \mathbf{z}(t_1) : \ & \ln p_{ heta}(\mathbf{x}) = \ln p(\mathbf{z}_T) + \sum_{t=1}^{T} \ln \left| \det rac{\partial \mathbf{z}_t}{\partial \mathbf{z}_{t-1}}
ight|, \quad \mathbf{z}_t = f_{ heta_t}(\mathbf{z}_{t-1}) \end{aligned}$$

$$\ln p_{ heta}(\mathbf{x}) = \ln p(\mathbf{z}_T) + \sum_{t=1}^T \ln \left| \det rac{\partial \mathbf{z}_t}{\partial \mathbf{z}_{t-1}}
ight|, \quad \mathbf{z}_t = f_{ heta_t}(\mathbf{z}_{t-1})$$



Flow matching

Go with the flow

Reinterpreting continuous normalizing flows

Continuous NF ODE:

$$rac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t; heta), \quad \mathbf{z}(t_1) = \mathbf{x}$$

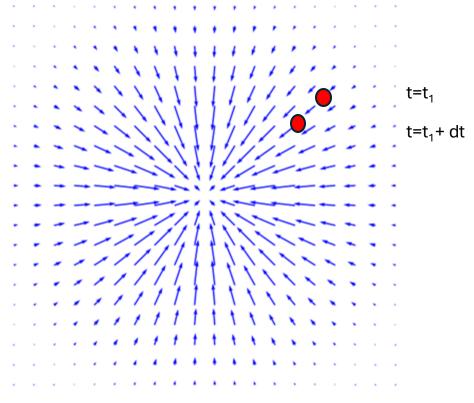
Flow matching ODE:

$$\frac{d}{dt} \frac{\phi_t(\mathbf{x})}{\phi_t(\mathbf{x})} = \frac{v_t(\phi_t(\mathbf{x}))}{\phi_0(\mathbf{x})} = \mathbf{x}$$

Diffeomorphic map (flow): $\phi_t: \mathbb{R}^d o \mathbb{R}^d$

Vector field: $v_t: \mathbb{R}^d o \mathbb{R}^d$

Probability path: $p_t: \mathbb{R}^d o \mathbb{R}_+$



Example of vector field

Reinterpreting continuous normalizing flows

Diffeomorphic map (flow): $\phi_t: \mathbb{R}^d o \mathbb{R}^d$

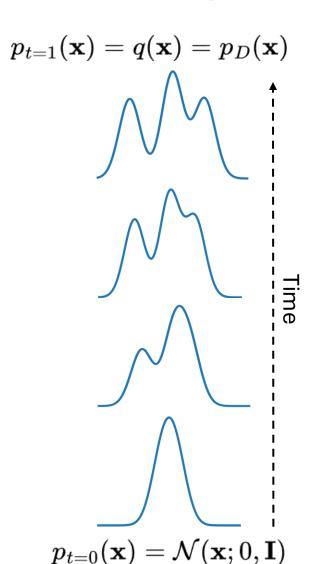
Vector field: $v_t: \mathbb{R}^d \to \mathbb{R}^d$

Probability path: $p_t: \mathbb{R}^d o \mathbb{R}_+$

Flow matching ODE:
$$\frac{d}{dt} \frac{\phi_t(\mathbf{x})}{\phi_t(\mathbf{x})} = \frac{v_t(\phi_t(\mathbf{x}))}{\phi_0(\mathbf{x})} = \mathbf{x}$$

Continuity equation (in log form):

$$\frac{d}{dt} \ln p_t(\boldsymbol{\phi_t}(\mathbf{x})) - \operatorname{div}(\boldsymbol{v_t}(\boldsymbol{\phi_t}(\mathbf{x}))) = 0$$
Implicitly defines



Flow matching objective

$$\mathcal{L}_{ ext{FM}}(heta) = \mathbb{E}_{t \sim \mathcal{U}[0,1]} \, \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x})} \left[||v_t(\mathbf{x}; heta) - u_t(\mathbf{x})||_2^2
ight]$$

Conditional probability path

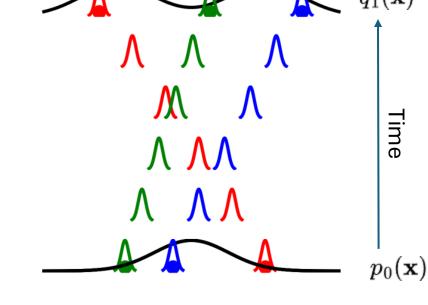
$$\begin{array}{cc} \text{Marginal} & p_t \\ \text{probability path} \end{array}$$

$$p_t(\mathbf{x}) = \int p_t(\mathbf{x}|\mathbf{x}_1) q(\mathbf{x}_1) \, d\mathbf{x}_1$$

Conditional Conditional vector field flow $u_t(\mathbf{x}; \mathbf{x}_1) = \frac{d}{dt} \psi_t(\mathbf{x}) = u_t(\psi_t(\mathbf{x}); \mathbf{x}_1)$

Conditional flow matching (tractable):

$$\mathcal{L}_{ ext{CFM}}(heta) = \mathbb{E}_{t \sim \mathcal{U}[0,1]} \, \mathbb{E}_{\mathbf{x}_1 \sim q(\mathbf{x}_1)} \, \mathbb{E}_{\mathbf{x} \sim p_t(\mathbf{x}|\mathbf{x}_1)} \, ig[||v_t(\mathbf{x}; heta) - rac{oldsymbol{u}_t(\mathbf{x};\mathbf{x}_1)||_2^2 ig]$$



Vector field of distribution q (unknown)

 $p_1(\mathbf{x}|\mathbf{x}_1)$

$$abla_{ heta} \, \mathcal{L}_{ ext{FM}}(heta) =
abla_{ heta} \, \mathcal{L}_{ ext{CFM}}(heta)$$

Rectified flow matching – Stable Diffusion 3

Goal: Learn the shortest paths between conditional distribuiton and the prior.

Conditional flow:
$$\psi_t(\mathbf{x}) = t \cdot \mathbf{x}_1 + (1 - (1 - \sigma_{\min})t) \cdot \mathbf{x}$$
 t=0: $\psi_0(\mathbf{x}) = \mathbf{x}_0$ t=1: $\psi_1(\mathbf{x}) = \mathbf{x}_1 + \sigma_{\min} \cdot \mathbf{x}$

Diffusion models

Noising is easy, denoising is hard.

Denoising diffusion

$$\mathbf{x}_0 \sim p_D \qquad p_{\theta}(\mathbf{x}_0) = \int p_{\theta}(\mathbf{x}_T, \dots, \mathbf{x}_1, \mathbf{x}_0) \ d\mathbf{x}_T \dots d\mathbf{x}_0 = \int p_{\theta}(\mathbf{x}_{0:T}) \, d\mathbf{x}_{1:T}$$

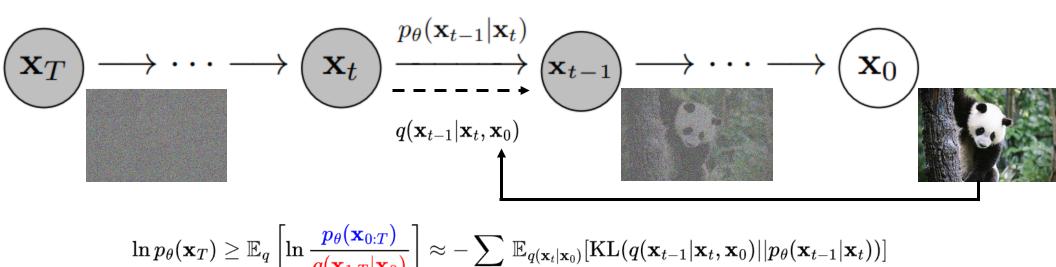
$$p_{\theta}(\mathbf{x}_0) = \int p_{\theta}(\mathbf{x}_{0:T}) \ d\mathbf{x}_{1:T} = \int p_{\theta}(\mathbf{x}_{0:T}) \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \, d\mathbf{x}_{1:T} \qquad \Longrightarrow \quad \ln p_{\theta}(\mathbf{x}_0) \geq \mathbb{E}_q \left[\ln \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right]$$
Markov chain factorization:
$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) := \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}) \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) := \mathcal{N}(\mathbf{x}_t|\sqrt{\alpha_t}\mathbf{x}_{t-1}, (1-\alpha_t)\mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{0:T}) := p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \sigma_t^2\mathbf{I})$$

$$\mathbf{x}_T \longrightarrow \cdots \longrightarrow \mathbf{x}_t \longrightarrow \mathbf{x}_$$

Noising process

Denoising diffusion in practice

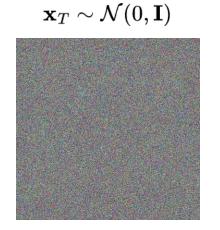


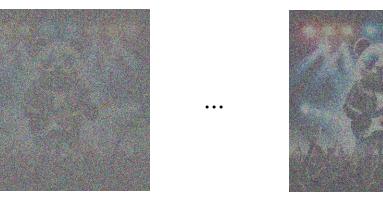
$$\ln p_{ heta}(\mathbf{x}_T) \geq \mathbb{E}_q\left[\ln rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}
ight] pprox -\sum_{t>1}\, \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)}[\mathrm{KL}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)||p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t))]$$

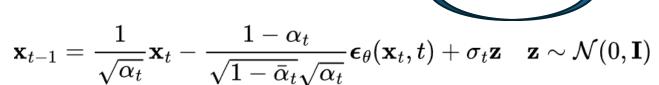
$$m{\mu}_{ heta}(\mathbf{x}_t,t) = rac{1}{\sqrt{lpha_t}}\mathbf{x}_t - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}\sqrt{lpha_t}}m{\epsilon}_{ heta}(\mathbf{x}_t,t) \qquad \sum_{t>1} \left. \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)}[c(t)\cdot||m{\mu}_q(\mathbf{x}_t,t)-m{\mu}_{ heta}(\mathbf{x}_t,t)||_2^2]
ight.$$

$$\min_{ heta} \; \mathbb{E}_{t \sim \mathcal{U}\{1,T\}} \, \mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0)} \, \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} [ilde{c}(t) \cdot || oldsymbol{\epsilon}_0 - oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t) ||_2^2]$$

Generating samples by denoising

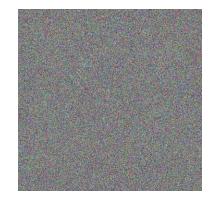






Conditional generation

 $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$



$$\mathbf{x}_{t-1} = rac{1}{\sqrt{lpha_t}}\mathbf{x}_t - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}\sqrt{lpha_t}}oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t) + \sigma_t\mathbf{z} \quad \mathbf{z} \sim \mathcal{N}(0,\mathbf{I})$$

$$\mathbf{x}_{t-1} = rac{1}{\sqrt{lpha_t}}\mathbf{x}_t - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}\sqrt{lpha_t}}oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t, \mathbf{y}, t) + \sigma_t\mathbf{z} \quad \mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$$

Conditional generation

Rockstar panda being a hunter in Pieter Bruegel the Elder's Hunters in the Snow painting.

The Hunters in the Snow Pieter Bruegel the Elder, 1565.

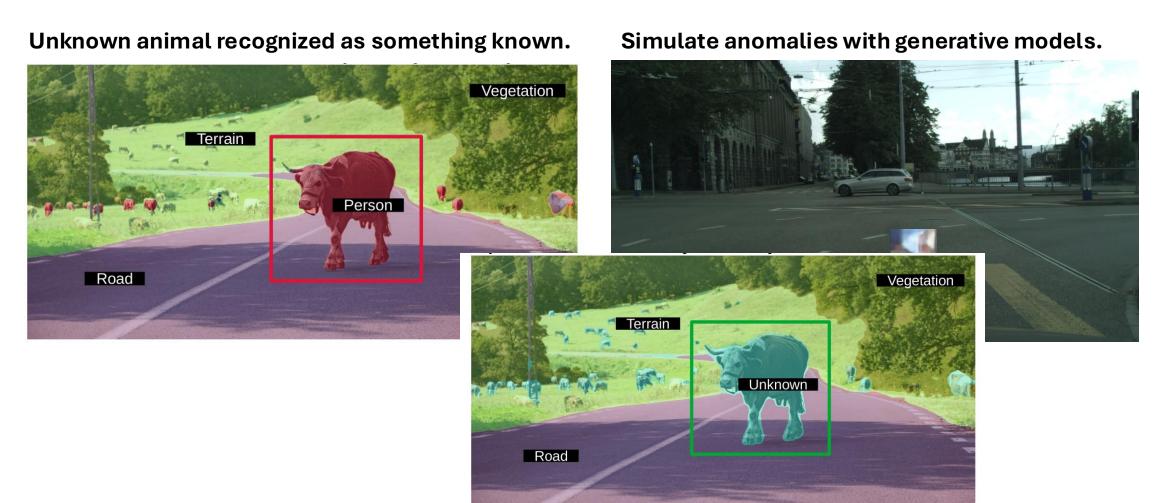
Rockstar Panda in the Snow Some nonlinear function, 2024.

Applications

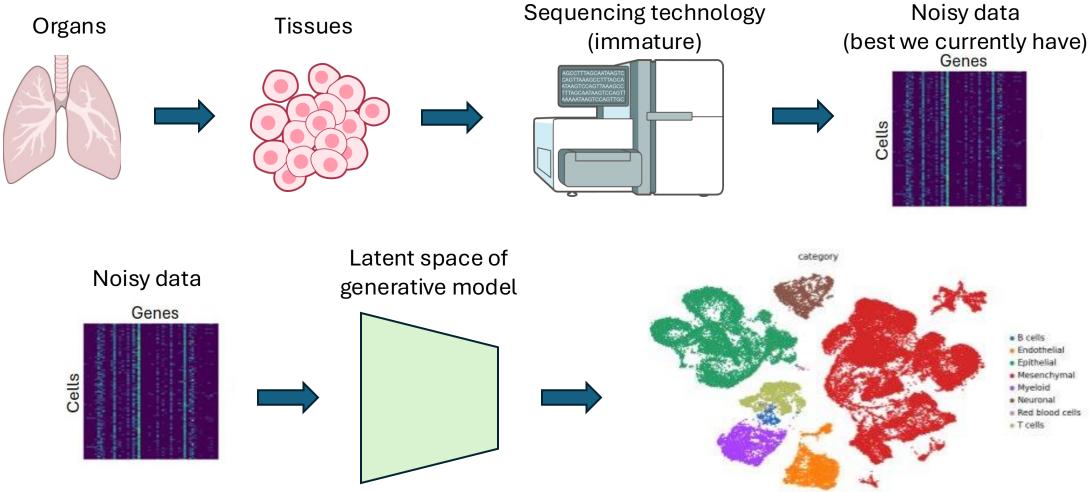
Transportation, biology, climate, ...

Unexpected objects in traffic

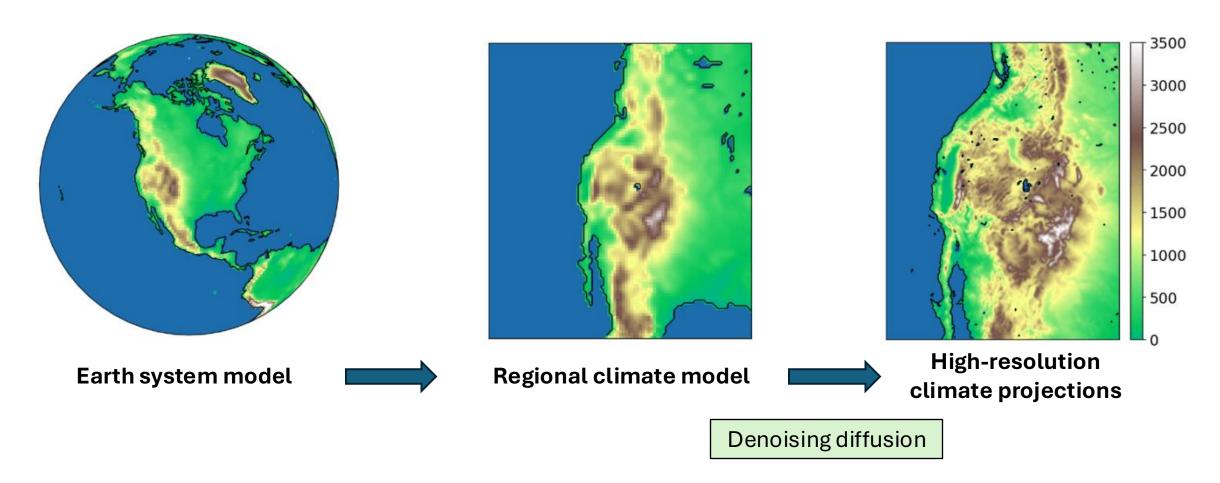
Training on simulated anomalies helps!



Uncovering biological signals in noisy data



Improved climate projections



Conclusion & outlook

What's next?

Conclusion

Flow matching

Latent variable models

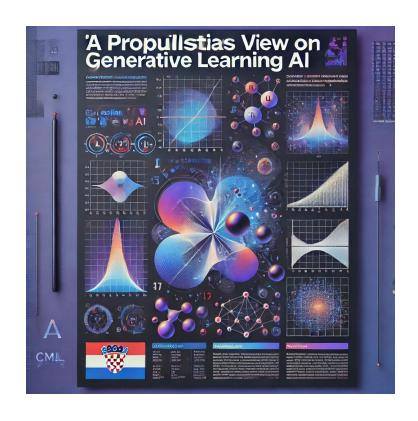
Diffusion models

Score matching

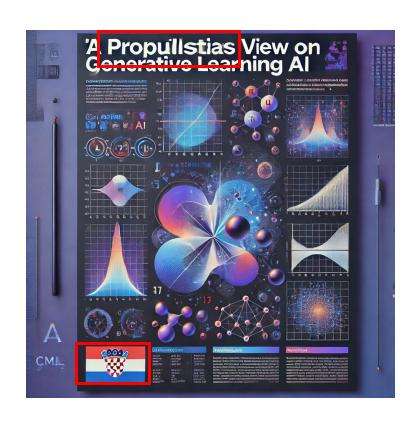
Energy-based models

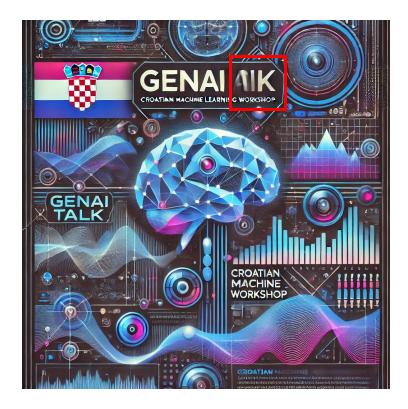
Continuous NFs

Current issues

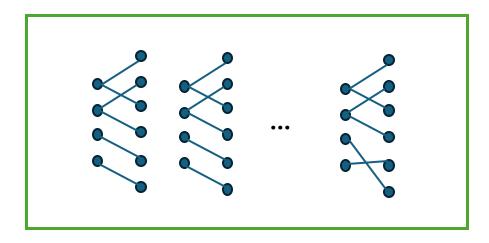


Current issues

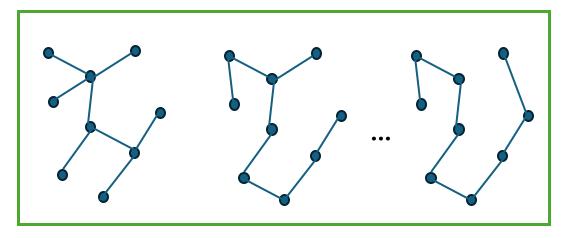




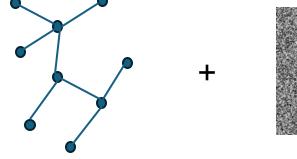
Modeling structured random variables

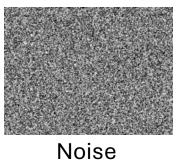


What if realizations of **x** are **bipartite graphs**?



What if realizations of **x** are **spanning trees**?





References & useful reads

- "How to Train Your Energy-Based Models" Song & Kingma, 2021.
- "Flow matching for generative modeling" Lipman et al., 2023.
- "Understanding Diffusion Models: A Unified Perspective", Calvin Luo, 2022.
- "Glow: Generative Flow with Invertible 1×1 Convolutions" Kingma & Dhariwal, 2018.
- "Neural Ordinary Differential Equations" T.Q. Chan et al. 2018.
- "Classifier-Free Diffusion Guidance" Ho & Salimans, 2021.
- Blogposts, Jakub M. Tomczak, https://jmtomczak.github.io