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How did we end up here?
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Preliminaries

d-dimensional probability space

Random variable (d-dimensional vector)

Probability density function 

Realizations of a random variable

Sampling the distribution of x
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How to learn the unknown data distribution?

...

Sample
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Energy-based models
How it all started..

7



Boltzmann's energy with deep models

Unnormalized distribution

Normalization
constant

Energy function

Model 
distribution

= ???
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Optimizing the energy surface
Optimized by gradient descent
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Iterative data generation

Score matching
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Normalizing flows
Let's get rid of normalization constant Z
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Change of random variables

Diffeomorphism 
(function and its inverse are differentiable)

The determinant
of Jacobian of f
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Generative modeling by change of variables

Parameterized diffeomorphism
(Deep model)

The determinant
of Jacobian of f

Known prior 
distribution

e.g Gaussian

Some complex 
model 

distribution
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Normalizing flows

f1

f2

fT

...

O(d3) complexity?
Invertible?

Diffeomorphism

Diffeomorphism
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Normalizing flows with affine coupling layers

y2 = s . z2 + t

gθ

zt Zt+1

z2

z1

y2

y1

(s,t)

Lower triangular matrix

Jacobian of coupling layer

z2 = (s-t) / z2 

gθ

zt Zt+1

z2

z1

y2

y1

(s,t)

has O(d) complexity

Forward:

Inverse:
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Forward/inverse with normalizing flows

......
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Discrete normalizing flows

f1

f2

fT

...
Discrete 

steps

t0

tT

t1

tT-1

tT-2
...
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Continuous normalizing flows

f1

f2

fT

...
Discrete 

steps

t0

tT

t1

tT-1

tT-2
...

Instantaneous change of variables

Continuous
time

t0

t1
...

Backpropagation trough ODE solver!

Ordinary differential equation (IVP)
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Flow matching
Go with the flow
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Reinterpreting continuous normalizing flows

Diffeomorphic map (flow):

Vector field:

Probability path:

Flow matching ODE:

Example of vector field

Continuous NF ODE:

t=t1

t=t1+ dt
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Reinterpreting continuous normalizing flows
Diffeomorphic map (flow):

Vector field:

Probability path:

Continuity equation (in log form):

Flow matching ODE:

Implicitly defines

Tim
e
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Flow matching objective

Vector field of distribution q (unknown)

Conditional flow matching (tractable):

Conditional 
probability path

Conditional 
vector field

Tim
e

Marginal
probability path

Conditional 
flow
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Rectified flow matching – Stable Diffusion 3
Goal: Learn the shortest paths between conditional distribuiton and the prior.

Conditional flow:

t=0:

t=1:
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Diffusion models
Noising is easy, denoising is hard.
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Denoising diffusion

Markov chain 
factorization:

Latents

Noising process
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Denoising diffusion in practice
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Generating samples by denoising

...
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Conditional generation

...
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Conditional generation

The Hunters in the Snow
Pieter Bruegel the Elder, 1565.

Rockstar Panda in the Snow
Some nonlinear function, 2024.

Rockstar panda being a hunter in Pieter 
Bruegel the Elder's Hunters in the Snow 

painting.
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Applications
Transportation, biology, climate, ...
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Unexpected objects in traffic 
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Training on simulated anomalies helps!

Unknown animal recognized as something known. Simulate anomalies with generative models.

Hybrid Open-set Segmentation with Synthetic Negative Data. Grcić & Šegvić, 2024.
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Uncovering biological signals in noisy data

Tissues Sequencing technology
(immature)

Noisy data
(best we currently have)

Organs

Noisy data
Latent space of 

generative model

Deep generative modeling for single-cell transcriptomics, Lopez et al. 2018.
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Improved climate projections

Regional climate modelEarth system model High-resolution
climate projections

Dynamical-generative downscaling of climate model ensembles. Lopey-Gomez et al. 2024.

Denoising diffusion
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Conclusion & outlook
What's next?
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Conclusion
Diffusion models

Flow matching

Score matching
Continuous NFs

Normalizing flows
Energy-based models

Latent variable models
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Current issues
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Current issues
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Modeling structured random variables

...

What if realizations of x are bipartite graphs?

...

What if realizations of x are spanning trees?

+ =

Noise 39
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